3^(2y)=(1)/(81)

Simple and best practice solution for 3^(2y)=(1)/(81) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3^(2y)=(1)/(81) equation:



3^(2y)=(1)/(81)
We move all terms to the left:
3^(2y)-((1)/(81))=0
We add all the numbers together, and all the variables
3^2y-(+1/81)=0
We get rid of parentheses
3^2y-1/81=0
We multiply all the terms by the denominator
3^2y*81-1=0
Wy multiply elements
243y^2-1=0
a = 243; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·243·(-1)
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{3}}{2*243}=\frac{0-18\sqrt{3}}{486} =-\frac{18\sqrt{3}}{486} =-\frac{\sqrt{3}}{27} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{3}}{2*243}=\frac{0+18\sqrt{3}}{486} =\frac{18\sqrt{3}}{486} =\frac{\sqrt{3}}{27} $

See similar equations:

| 6+-x=12 | | 1/4=e/42 | | x/42=1/4 | | 99=v+1 | | j*0.9=5.4 | | D=610-d | | .x/3=6 | | 0=4.9t^2-13.63t+2.16 | | 43x−9=27 | | 0=4.9t^2-13.63+2.16 | | 6/42=2/n | | 22=f-38 | | 0=4.9t^2-13.63 | | h-3=35 | | (4x-8)-4(6.5x+5=) | | 3/4x−9=27 | | 2x+3(-3x-5)=-50 | | x+2=-0.8*x+2.8 | | 5y-3(5+1)=2y-30+6 | | (x2+5x+4)–(2x2–3x+6)= | | 9z^2-30z+26=9z2−30z+26=1 | | d-39=50 | | 5y-3(4+1)=2y-24+6 | | 2w=70 | | 4x+5(5x+5)=170 | | 4x=+20 | | j-33=17 | | 200=1000(x)(4) | | 4x-7=3(x-2) | | 200=1000(r)(4) | | X-33°=3y | | 14/6=n/2.2 |

Equations solver categories